If it's not what You are looking for type in the equation solver your own equation and let us solve it.
26y^2+2y-57=0
a = 26; b = 2; c = -57;
Δ = b2-4ac
Δ = 22-4·26·(-57)
Δ = 5932
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5932}=\sqrt{4*1483}=\sqrt{4}*\sqrt{1483}=2\sqrt{1483}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1483}}{2*26}=\frac{-2-2\sqrt{1483}}{52} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1483}}{2*26}=\frac{-2+2\sqrt{1483}}{52} $
| 5x-x=2x+10-3 | | 6s+3s-5=40 | | 5*2.50*x-6=400 | | -25=-0.03*x^2+x | | 2c-12=8c+24 | | (4x-5)=(-8x-3) | | 3/8j=48 | | 7u-5=3u+15 | | 2(x+3/4x)=252 | | 7.75-6m=64.75 | | y^2-8y=15 | | 188=11x(-3) | | 1/4t-3=-7 | | 5(w-1)=3w+13 | | 20(x)-15=45 | | 16=4(y+5)-6y | | -7(2x-5(=16 | | -5x+6=-4x-7 | | R^2-2r=8 | | -20=3.5h+8 | | 13s+20(1729-s)=30870 | | 3x+8+x=26 | | 3(2x+4)=10x+9-(4x+3) | | 4n-14=90 | | 4x+1/2(8x+6=2(4x+3 | | 188=4x-4(7x=1) | | 0/0=b | | 0/0=6*b | | 5v+11=9v-5 | | 5p+6=p^2 | | x+3-1=5x-x-2 | | 3p-9-5p=-6 |